

MULTI-TASK INTER-TURBINE POWER PREDICTION

Simon Brealy, CEng, Final year PhD

Authors: S. M. Brealy, L. A. Bull, P. Beltrando, A. Sommer, N. Dervilis, K. Worden

BACKGROUND

UK target to quadruple offshore wind capacity by 2030

\$

Operations and maintenance are 40% of wind farm costs^[1]

7555

This motivates the efficient use of data for monitoring

KNOWLEDGE GAP

Limited "damage" data and environmental variability hinder robust model development^[2]

Novel probabilistic machine learning approaches may provide a solution, leading to lower consumer bills

METHOD

Step 1

A probabilistic model was developed to predict turbine power using wind farm data, that adjusts for wind-direction

Step 2

| 12

This is used to learn turbine-specific parameters, allowing for differences in turbine behaviour

Simultaneously, shared farm-level parameters are learnt, capturing similarities between turbines. This approach can be described as Multi-Task Learning (MTL)^[3]

MTL enables the sharing of "statistical strength" and the capture of spatial patterns, allowing one to predict power accurately even for previously unobserved turbines

Graphical representation of the multi-task "metamodel"

RESULTS

Turbine-specific parameters are determined by their coordinates and the farm-level parameters

Map showing how the model infers parameter correlations across the wind farm

The metamodel outperforms a range of benchmark models in predicting turbine power — including on turbines it hasn't 'seen'

200 100 -100 20 40 60 80 turbine

~ model uncertainty capture

Benchmark MTL models
complete-pooling

metamodel

complete-pooling
partial-pooling

CONCLUSIONS

Multi-task learning can overcome challenges with data scarcity and environmental variability, and has a range of applications for offshore wind farms

The developed approach helps extract the maximum insight from the data, enabling better decisions and reduced costs

[3] K. P. Murphy. Machine Learning: A Probabilistic Perspective. MIT press, 2012