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u UK target to quadruple offshore wind capacity by 2030

g@ Operations and maintenance are 40% of wind farm costsl!]

&

This motivates the efficient use of data for monitoring

Limited “"damage” data and environmental variability hinder
robust model development!2]

Novel probabilistic machine learning approaches may provide a
solution, leading to lower consumer bills
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CONCLUSIONS

Multi-task learning can overcome challenges with data
scarcity and environmental variability, and has a range of
applications for offshore wind farms

The developed approach helps extract the maximum insight
from the data, enabling better decisions and reduced costs
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