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High Temperature Gas Reactors (HTGR) will be demonstrated 
by the UK’s Advanced Modular Reactor (AMR) programme.

Steady-state and time-dependent scenarios must first be 
simulated to underpin the safety of these HTGR technologies.

• 3D Fuel block geometry is simplified from 31 fuel rods to 6, as shown in 
Figure 1 below, to reduce CFD mesh complexity [1].

• Augmentation factors for pressure drop and heat transfer calculations are 
applied in Ansys Fluent to account for the reduction in wetted surface 
area when simplifying 31 channels to 6.

• The simplified 6-channel CFD model solves significantly faster, which 
improves commercial viability of the verification process.

Introduction Objectives

CFD Methodology Results

Simulate Japan’s High Temperature Engineering Test Reactor 
(HTTR) using coarse-mesh Computational Fluid Dynamics (CFD).

Establish HTTR CFD and nuclear thermal hydraulics models with 
built-in flexibility to enable scaling from 30 MWth to 250 MWth.
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• A HTTR Core CFD model was made in Ansys Fluent and was compared to a HTTR 
thermal hydraulics model made in Flownex®, showing strong agreement between 
the predicted helium temperatures.

• Graphite temperatures predicted between Ansys Fluent and Flownex® vary by 
approximately 50°C, with work underway to investigate heat transfer coefficients.
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• The Flownex® model assumes the full HTTR core is axisymmetric, 
requiring the solid core geometries to be averaged into concentric rings: 
each with volume-averaged thermal properties [2].

• Temperatures of the fuel rods, helium coolant, and graphite moderator 
shown in Figure 2 are calculated using a 2-dimensional axisymmetric 
Flownex® model shown in Figure 3.

Thermal Hydraulics Methodology

Figure 4. Temperature contours from Ansys Fluent of HTTR 
during full-power (left) and third-power (right) operation 

Figure 1. Comparison between explicit and simplified fuel blocks

• A Flownex® model for an individual fuel block, shown in Figure 3, was 
used to verify the thermal hydraulic behaviour of the 5-high fuel block 
stack. This model is then applied to the full HTTR core.
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Figure 3. Flownex® model of the fifth fuel block in the fuel block stack

Full-power 
Boundary Condition

Value

Helium mass flow rate (kg/s) 
[3]

12.5

Helium inlet temperature (°C) 
[4]

395

Reactor pressure (MPa) [4] 4

Graphite grade IG-110

Vessel Cooling System (VCS) 
temperature (°C)

40

VCS Convective Heat Transfer 
Coefficient (W/m2K)

3

395°C

370°C

860°C

180°C

165°C

335°C

Next Steps
Expand HTTR models to incorporate transient fault condition analysis, such as 
during a Loss of Forced Coolant scenario.

Investigate heat transfer correlations within Flownex® for component 
temperature predictions down to the graphite fuel compact.

This work was funded by HM Department for Energy Security and Net Zero’s (DESNZ) AMR programme.
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Axial Temperatures within a Full-power Fuel Stack
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Figure 5. HTTR core 
CFD geometry
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Figure 6. Graph of axial temperatures of a fuel stack
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Figure 2. Heat transfer path through component-level geometry
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