Preventing bacterial surface contamination via mathematical modelling E.F. Yeo¹, B.J. Walker¹, P. Pearce¹, M.P. Dalwadi² ¹University College London, ²University of Oxford

The context

Dense surface-associated colonies of bacteria known as biofilms damage safety and efficacy across industries

The challenge

Biofilm prevention requires predicting **where** and

$$\nabla \cdot (\mathbf{u}\rho) - D_{eff} \nabla^2 \rho = 0$$

Catheter tube

location per second

Advantages

Our boundary layer theory is at least 6 times faster at predicting bacterial density than existing complex mathematical models

G For certain systems simple formula can predict adhesion

Case study: E. coli in medical and industrial settings

Input bacteria and flow parameters No Complex ls **boundary** model layer theory required valid?

 $\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$

dimensions

Data location tells you whether **boundary layer theory** or simple formula are valid

instantly

Minimal data needed to predict adhesion

Mathefation Applicable to many pathogens relevant in industrial settings

Predictions can be used to design new antimicrobial devices

This research was funded by an EPSRC National Fluid Dynamics Postdoctoral Fellowship

⁻⁴ Image source: Adobe stock