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Achieving Separation with Membraneless Water Electrolysers
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UK Wind energy curtailment predicted 
cost at 3.5bn £ a-1 (2030) [1]

Alkaline Electrolyser

Store energy as H2 by 
splitting water in electrolysis

Mining Supply of 
Iridium (PEM) 

~ 7 t a-1 [2]

High Cost due to 
low throughput 

(current density) 
(2000 $ kW-1) [3]
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Simulation – Building a Virtual Laboratory 
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Experimental – Validating Model and Verifying Membraneless Operation Membraneless
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1. Bubble dependent local reaction rate is higher towards electrode gap.
2. Electrolyte flow is not enough for separation.
3. Porous barrier layer with specific properties can achieve separation.
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Experimental and Simulation Electrolyser Current-Voltage Prediction of dissolved gas crossover at scale (0.5 m)
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How to separate products & improve efficiency by removing the membrane separator ?
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2
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Ion Conduction Electrochemical reaction

Coupling:
1. Two-phase flow
2. Electrochemistry

Ionic current distribution and blocking effect of 
bubbles

Bubble Tracking

Model predicts same 
recirculation pattern
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1. Achieved separation of bubbles in both model and lab-scale prototype using designed porous electrode and flow properties up to 7 A cm-2 
2. Minimum electrolyte flow rate (Reynolds number of 50) required for <2% crossover.
3. Future membraneless electrolyser should minimise electrode gap while ensuring uniform flow distribution through porous electrode at scale
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