

Polymer of Intrinsic Microporosity Enabled pH-Responsive Adsorptive Membrane: Selectivity and Mechanism

Ching Yoong Loh¹, Prof. Andrew Burrows², Dr. Xinyu Zhang³, Dr. Ming Xie¹

1. Department of Chemical Engineering, University of Bath, United Kingdom 2. Department of Chemistry, University of Bath, United Kingdom 3. School of Civil and Environmental Engineering, Shandong Jianzhu University, China

Research Motivation

 Synthetic dyes causes detrimental risks towards aquatic, terrestrial and human

Clean Water and

Support UN Sustainable **Development Goal**

Pressure-driven membrane tech.

- Ost effective
- Simple operating
- mechanism

Challenges: High energy demand, Selectivity/permeance, Fouling issues

● PIM-1 is a novel

absorption capacity

• Low processability

material with

exceptional

 $(\sim 800 \text{ m}^2/\text{g}).$

Hydrophobic

Design and Optimisation of Membrane Fabrication

Adsorptive membrane

Material selection

Membrane fabrication

Non-induced solvent phase separation (NIPS)

The adsorptive membrane will possess • Higher removal rate • Higher permeance • Lower energy demand

• **Regenerative** abilities

Amidoxime-modified PIM-1 (AOPIM)

Modified PIM-1 have sufficient absorption capacity (~500 m²/g). • **High** processability Hydrophilic

• pH-responsive

- AOPIM is dissolved in N,N-dimethylformamide (DMF).
- AOPIM solution is casted on top of a glass substrate.
- The casted membrane is immersed in ethanol for an hour.
- AOPIM membrane is formed.

Adsorptive Membrane: Characteristics and Performance

Adsorptive AOPIM membrane

Membrane filtration performance

Single charged dye filtration High permeance: >94 L/m²·h·bar Removal rate: 80% (- dyes), 99% (+ dyes)

Dual charged dye filtration High permeance: >80 L/m²·h·bar

Membrane structure and morphology

Surface morphology **Rougher** surface than of traditional membranes, increases **specific** surface area.

Cross-section Spongy structure increases **tortuosity** (dye retention time)

Dye selectivity: 0.3 (Target dye/Total dye)

(a) Reusability of AOPIM membrane and (b) Comparison between commercial and AOPIM membrane

Adsorptive Membrane Manifests High Yet Smart Selectivity.

Reference [1] Loh et al., "Polymer of Intrinsic Microporosity Enabled pH-Responsive Adsorptive Membrane: Selectivity and Mechanism", ACS Appl. Eng. Mater. 2024, 2, 2, 404–414

