RADAR SENSING OF THE ENVIRONMENT FOR FUTURE AUTONOMOUS MARINE PLATFORMS

Anum Pirkani, Marina Gashinova

MOTIVATION

Growing market for small agile vessels & need for enhanced situational awareness

- Reliable all-weather, day/night detection and classification of small objects.
- Detection and tracking of large waves.

Challenges in the maritime environment

- Unpredictable weather and sea conditions.
- Multiple moving objects (ships, boats, kayakers, marine wildlife).


Millimeter-wave & sub-THz radar system (76-340 GHz) as the key solution

- High-resolution imaging and fine Doppler information.
- Compact sensors with advanced 'cognitive' signal processing.

Advantages over traditional marine radar •

- Video-like radar imaging enables advanced image processing.
- **Enhanced cross-range resolution** improves small object detection. 3D radar imaging – enhances object differentiation and scene awareness.

Situational awareness for small marine crafts is of vital importance for improved marine safety, path planning, and obstacle avoidance.

METHODOLOGY Inertial Measurement Unit Radar Data Cube: Node 1 ... N Range Doppler Processing **MIMO Beamforming Platform Kinematics Target Detection Moving Target** DBS **OSCA-CFAR** Indicator Beamforming Clustering Multi-target tracker Multi-Modal (Extended Kalman Filter) MIMO-DBS Adaptive MIMO-DBS **High Resolution High Resolution** Stationary Environment **Dynamic Targets** Position/velocity of dynamic targets Multi-modal Data Integration Node 1 Earth Centric, Common Platform Centric Occupancy Grid Multi-modal Image Multi-modal Multi-perspective

MEASUREMENTS

77 GHz automotive MIMO radars

79, 150, 300 GHz prototype radars

Inertial measurement units

ZED stereo cameras

LiDAR

Backscatter data of sea surface

Different sea states, wind directions, pointing directions, grazing angles to investigate propagation effects in marine boundary layer.

Data of floating marine targets

e.g. flotsam, jetsam, lobster pots, buoys, pallet, wimmers, to record signatures in situ.

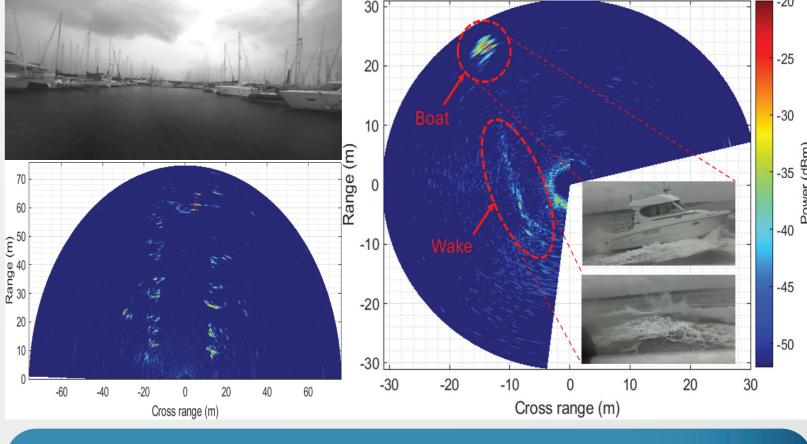
> **Data from marine mammals** e.g. seals, dolphins.

Distributed sensing network

RESULTS

Scene decomposition into stationary and dynamic regions

Distributed


MIMO-DBS: Multiple-Input, Multiple-Output - Doppler Beam Sharpening

radar network

Image

Shore Cross Range (m)

Digital reconstruction of a scene

Structure of marine targets for segmentation and classification

IMPACT OF THE RESEARCH

Node N

Fundamental and applied research conducted to develop adaptive multi-modal algorithm for mitigating effects of dynamic sea clutter will produce focused imagery of small targets and resolve targets as anomalies.

Multi-target detection and tracking will estimate the trajectory of platform and targets in complex dynamic maritime environment.

Trajectory of Platform

and Target(s)

Radar sensing network will equip next generation of autonomous, remotely controlled and assisted small/medium marine platforms with day/night, all-weather, high fidelity situational awareness.

Anomaly detection and cognitive sensing will enable planning paths in dynamic sea, docking, and avoiding obstacles such as buoys, flotsam & jetsam, hazardous waves, swimmers, and sea mammals.

FUTURE WORKS

Hardware design – smaller form factor, high pulse repetition frequency, multi-band.

Sensor fusion with multi-perspective sensing from distributed sensing network.

Image segmentation and classification to establish a catalogue of marine targets.

Algorithms for path planning to deliver 'true' autonomy.

For more enquiries, please contact: Anum Pirkani, a.a.a.pirkani@bham.ac.uk

Acknowledgements:

This work was supported by the Engineering and Physical Sciences Research Council (EPSRC), U.K., and is part of the project: "Sub-THz Radar sensing of the Environment for future Autonomous Marine platforms (STREAM)".

References:

- A. Pirkani, et. al., '77 GHz FMCW Imaging Radar for Low Observable and Small Marine Target Detection in Dynamic Sea Conditions Based on Combined MIMO and DBS', IEEE TRS, 2024.
- A. Pirkani, et al., 'Target Tracking in Maritime Environment using 77 GHz FMCW-MIMO-DBS Imaging Radar', IRS 2024, pp. 97–102.
- · A. Pirkani et al., 'Doppler Beam Sharpening for MIMO and Real Aperture Radars at mm-wave and Sub-THz Maritime Sensing',
- 24th IRS, May 2023. • A. Pirkani, et. al., 'Dynamic Multi-Target Detection and Focus in Maritime Conditions', 20th EuRAD, Berlin, Germany, 2023.

