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1. Quantum networks

Information encoded in photonic qubits and transmitted over optical fibres.

. between nodes using Quantum Key Distribution el B g Ve
(QKD) for long-term data security. AR Y s e st
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Connect remote quantum processors and enable ™ s

Scalable sources of single and entangled photons are

the keyStOne for bUI|dIﬂg photonlc quantum networks. London quantum-secure metro network: 3 core nodes an
customer access tails are connected using QKD.

2. Semiconductor quantum dots (QDs) 4. A bright and fast telecom single-photon source

« Nanostructures that confine electrons and
holes within a small volume.

 100x compared to QDs on the same chip
without CBG resonators.

* Robust, stable, compatible with standard
semiconductor processing techniques.

 b5x enabled by the Purcell effect.

« High rates and single-photon purity preserved after propagation
* On-demand emission of and over >50 km of optical fibre

at telecom wavelengths.
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from a telecom QD in a CBG resonator. (b) Radiative lifetimes with evidence of

. . . . .. Purcell enhancement. (c) Rates and single-photon purity after propagation in a
Engineering the photonic environment for efficient commercial telecom fibre.

collection of the emitted photons.

5. Reproducibility and scalability

3. Our approach « A compact 5x5 mm semiconductor chip has the potential to host
hundreds of CBG sources.
* Integration of telecom QDs into (CBG)  Ensuring reproducible performance is key for
resonators. fabrication and large-scale adoption of this technology.
steady flow of indistinguishable telecom photons. of 40 ( ).
« Performance optimised through a continuous feedback loop.
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6. Conclusions

. and of telecom single photons from a quantum dot in a CBG resonator.
« Reproducible performance supports of the sources.

e High-rate transmission of pure single photons over >50 km of commercial optical fibre, proving readiness for
using the existing fibre infrastructure.
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