Atom Gazing for Improved Solar Energy

Yifu Shi, Megan E. Jones, Martin S. Meier, Matthew Wright, Chris Grovenor, Michael Moody and Ruy S. Bonilla

Department of Materials, University of Oxford, Oxford, OX1 3PH, United Kingdom

Introduction

- Solar energy has vast potential for
 - decarbonisation of energy systems
 - broad and equitable electrification
 - carbon neutrality
- 95% of solar panels made from Silicon
 - Abundant, stable, lightweight, and efficient.
- More solar energy deployment requires even more efficient panels.
- Tackling climate change requires Solar energy deployment in the multi-TW/year.

Specimen Details

- SiN$_x$ has hydrogen (H) and deuterium (D).
- H/D released with a 2 min 500°C anneal.
- A very fine needle is made across layers using electron microscopy (red area).

Atom Probe Tomography (APT)

- Needle is cooled to <80K, held at DC electric potential, and blasted with laser pulses.
- Atoms vapourised by the blast are detected by a position sensitive detector.
- The time that it takes for atoms to fly is used to identify what elements they are.

What is the atomic composition of the solar cell nanolayers?

- Ionic species from each element inside the needle are identified on mass spectrum (below).
- The key species are chosen and a digital 3D reconstruction is calculated (right).
- 16O (blue map) marks the location of oxide and SiN$_x$ (with H inside)
- Mass-to-charge ratio of 4 Da unambiguously attributed to Deuterium – a signature of H presence.
- H accumulates at interfaces to improve performance.

Conclusions

- APT offers 3D digital reconstruction of the atoms that compose interface nanolayers, and allows chemical analysis suitable for the understanding of next generation solar cells.
- Hydrogen is identified at the interfaces, and found to be a crucial element that mediates the effectiveness of the nanolayer sandwich in solar cell operation [3].
- Controlling hydrogen in nanoscale sandwiches has become a major area of materials and process engineering leading to the improvement of solar cell technology.
- Understanding materials at the atom scale will enable technical advances and contribute to the broad deployment of solar energy – a crucial renewable technology for a zero-carbon future.

Funded by: