Developing a model of the human airways to investigate the impact of smoking and vaping on COVID-19 susceptibility

Rachel Bowsher¹, Tim Marczylo¹, Matthew Wright¹, Karen Gooch¹, Alexis Bailey² and Emma Marczylo¹

INTRODUCTION

Smoking and vaping
- Cigarette smoke contains thousands of chemicals known to harm to human health.
- An estimated 4.3M people in the UK use e-cigarettes, but the harm associated with e-cigarettes is less well known.
- Using animals for research into smoking is no longer permitted in the UK, so an alternative cell-based physiologically relevant model is required.

COVID-19
- SARS-CoV-2 virus continues to circulate globally and those at risk may still experience severe COVID-19 symptoms.
- It is essential to identify vulnerable populations at a greater risk of infection and severe disease to tailor advice and treatments.
- Evidence for association(s) between smoking/vaping and susceptibility to infection with SARS-CoV-2 is conflicted.

RESULTS

1) Air-liquid interface cell models sufficiently mimic the airways

- Identify cell types and cell models
- Grow the cells for 28 days as an air-liquid interface model
- Assess the cell model to ensure it mimics the respiratory tract

2) Genes altered by cigarettes, e-cigarettes or nicotine interact with genes involved in viral entry (ACE2 or TMPRSS2) and thus may alter the risk of SARS-CoV-2 infection

- Identified 7,808 related research papers
- Extracted data from 99* relevant papers
- Identified smoking/vaping-induced genes interact with:
 - ACE2 across 129 pathways (e.g. viral entry and immune responses)
 - TMPRSS2 across 28 pathways (e.g. viral entry and protein processing)

FUTURE WORK

3) Compare genes of interest before and after cigarette/e-cigarette exposure and SARS-CoV-2 infection
- Complete the review of the literature identifying genes of interest.
- Analysing genes of interest and the differences in their interaction pre- and post- infection will help to determine any changes in SARS-CoV-2 susceptibility.

ACKNOWLEDGEMENTS

Many thanks to Emma-Jane Goode at UKHSA for her continued support during the cell model characterisation work.

CONCLUSIONS

- Air-liquid interface cell models enable non-animal research into the impact of smoking/vaping on susceptibility to SARS-CoV-2 infection.
- Reviewing published literature identified genes altered by cigarettes, e-cigarettes and/or nicotine.
- These genes form networks involved in SARS-CoV-2 viral entry (ACE2, TMPRSS2) and associated immune response(s), potentially linking smoking/vaping with altered COVID-19 susceptibility.
- Further investigations will inform public health advice and policy.