Effect of combined B-vitamin supplementation on bone mineral density in adults: a 2-year randomised controlled trial

M. Clements1, M. Heffernan2, M. Ward1, L. Hoey1, L.C. Doherty1, R. Hack Mendes2, M.M. Clarke2, C.F. Hughes1, I. Love3, S. Murphy3, E. McDermott3, J. Grehan3, A. McCann4, L.B. McAnena1, J.J. Strain1, L. Brennan2, H. McNulty1

1Nutrition Innovation Centre for Food and Health, School of Biomedical Sciences, Ulster University, Coleraine, BT52 1SA, Northern Ireland, 2UCD School of Agriculture and Food Science, Institute of Food and Health, Conway Institute and 3Section of Radiography & Diagnostic Imaging, School of Medicine, University College Dublin, Belfield, Dublin 4, D04 V1WB, Republic of Ireland, 4BEVITAL AS, Bergen, Norway

Introduction
➢ Osteoporosis, a musculoskeletal condition characterised by low bone mineral density (BMD) and deterioration of bone microarchitecture, affects over 200 million people worldwide, with significant adverse health and economic impacts.1
➢ Large cohort studies report strong positive associations between homocysteine (Hcy) concentrations and risk of osteoporotic fracture and/or low BMD,2,3, with an estimated 4% increased risk of fracture for every 1µmol/L increase in Hcy. Likewise, a higher risk of hip fracture was reported in Norwegian women with lower (< 2.9 nmol/L) compared to higher (> 6.6 nmol/L) serum folate concentrations.2
➢ Other evidence links low vitamin B12 status with poorer bone health, with data from the Framingham Osteoporosis Study showing that plasma B12 concentrations < 148pmol/L were associated with significantly lower BMD.4
➢ There is also some, albeit limited, observational evidence showing associations of dietary intakes or status of vitamin B6 and riboflavin with BMD. Therefore B-vitamin supplementation may be beneficial in maintaining BMD, but to date no previous randomised trial has investigated the effect of all four vitamins in this context.

Aim
➢ To investigate the effect of low-dose B-vitamin supplementation for 2 years on BMD in adults

Methods
Ulster University (n=120) University College Dublin (n=120)

Participant recruitment (n=240)
Inclusion criteria: Community-dwelling adults ≥50 years, not using B-vitamin supplements, low fortified food intake (≤4 portion(s)/week), no gastrointestinal diseases

Baseline (pre-intervention) & 24-months (post-intervention)
Anthropometrics, blood pressure measurements, hand grip strength, DXA bone scan, health & lifestyle questionnaire, dietary assessment (FFQ and 4-day food diary), blood sample (B-vitamin biomarker analysis) and cognitive assessments (MMSE, FAB, RBANS)

Randomisation

Active Placebo
Vitamin D 10µg

B-vitamin Treatment
Folic Acid 200µg, B12 10µg, B6 10mg, riboflavin 5mg, vitamin D 10µg

Data & biochemical analysis
Data analysis and B-vitamin biomarker analysis

Figure 1. OptiAge RCT Study Design

Results Summary
➢ B-vitamin supplementation for 2 years had no overall effect on BMD (Table 1), which declined in both groups by approximately 1% (ranging from ~0.7% to ~1.4%).
➢ In participants with lower baseline vitamin B12 status, B-vitamin supplementation decreased the extent of decline in BMD at the total hip (Figure 2a) and femoral neck (Figure 2b) over the 2-year period vs placebo.

Results

Table 1. BMD response to B-vitamins for 2 years

<table>
<thead>
<tr>
<th></th>
<th>Active Placebo (n=102)</th>
<th>B-vitamin Treatment (n=103)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>General</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age (years)</td>
<td>70.6 (69.1, 72.0)</td>
<td>68.7 (67.3, 70.1)</td>
<td>0.085</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>28.6 (27.6, 29.6)</td>
<td>28.2 (27.3, 29.1)</td>
<td>0.619</td>
</tr>
<tr>
<td>Sex, n (% male)</td>
<td>42 (41)</td>
<td>39 (38)</td>
<td>0.732</td>
</tr>
<tr>
<td>BMD (g/cm²)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total hip</td>
<td>0.970 (0.941, 1.000)</td>
<td>0.968 (0.940, 0.996)</td>
<td></td>
</tr>
<tr>
<td>Post</td>
<td>0.962 (0.933, 0.991)</td>
<td>0.957 (0.928, 0.985)</td>
<td></td>
</tr>
<tr>
<td>Change</td>
<td>-0.009 (-0.013, -0.004)</td>
<td>-0.012 (-0.016, -0.007)</td>
<td>0.353</td>
</tr>
<tr>
<td>Femoral neck</td>
<td>0.891 (0.866, 0.917)</td>
<td>0.903 (0.878, 0.928)</td>
<td></td>
</tr>
<tr>
<td>Post</td>
<td>0.884 (0.859, 0.909)</td>
<td>0.895 (0.870, 0.921)</td>
<td></td>
</tr>
<tr>
<td>Change</td>
<td>-0.008 (-0.013, -0.003)</td>
<td>-0.007 (-0.012, -0.002)</td>
<td>0.938</td>
</tr>
<tr>
<td>Lumbar spine</td>
<td>1.120 (1.084, 1.156)</td>
<td>1.132 (1.093, 1.171)</td>
<td></td>
</tr>
<tr>
<td>Post</td>
<td>1.111 (1.076, 1.146)</td>
<td>1.117 (1.157, 1.110)</td>
<td></td>
</tr>
<tr>
<td>Change</td>
<td>-0.010 (-0.017, -0.003)</td>
<td>-0.014 (-0.020, -0.007)</td>
<td>0.170</td>
</tr>
</tbody>
</table>

Data shown as mean (95% CI) or %; Change shown as adjusted mean; Analyzed on an intention-to-treat basis.

Table 1. BMD response to B-vitamins for 2 years

Conclusions
➢ Low-dose B-vitamin supplementation for 2 years resulted in significant responses in B-vitamin biomarkers, but there was no overall corresponding effect on BMD within the total cohort.
➢ Improving B-vitamin status appears to have benefits in maintaining bone health specifically in adults with lower vitamin B12 status. Further studies are warranted to confirm this finding.

References

Acknowledgments: This study was supported by governmental funding from the Department of Agriculture, Environment and Rural Affairs in Northern Ireland and the Department of Agriculture, Food and the Marine in the Republic of Ireland.