Human genomic insights into reproductive ageing and fertility
Stasa Stankovic | PhD student | stasa.stankovic@mrc-epid.cam.ac.uk

INTRODUCTION
- Menopause age varies considerably in population
- It impacts infertility and women’s health status
 - Early menopause (<45 years): 10% of women
 - Premature menopause (<40 years): 1%
- Fertility deteriorates 10 years before menopause
- No long-term clinical predictors of infertility
- UK Gov: First Women’s Health Strategy (2021)

What determines the timing of menopause?
How does menopause impact infertility and other health outcomes?

USING GENOMICS TO UNDERSTAND AND PREDICT VARIATION IN FERTILITY LIFESPAN

AIM: Understand how genes influence the fertility lifespan

STEP 1: Collect genomics and reproductive data from 500,000 women in UK Biobank and other studies --> test their association using big data analytics and statistical models.

STEP 2: Discover genetic variants and genes responsible for differences in fertility lifespan using genome-wide association and whole exome sequencing.

RESULT TO DATE
Identification of ~300 regions in DNA that influence fertility lifespan.

AIM: Predict women’s fertility lifespan to enable more informed reproductive choices

GENOMICS

- Sum of the individual genetic variants associated with menopause will impact where you are in the distribution
- Women with a mutation that stops BRCA1 gene from working have menopause 2.6 years earlier
- Prediction test using human genomics data and other blood based biomarkers has the potential to identify women with early menopause

IMPACT: testing for reproductive expectations could allow family planning, treatment of early menopause and timely management of later life diseases

USING GENOMICS TO IMPROVE FERTILITY AND HEALTH OUTCOMES IN WOMEN

- Human genomic findings tested in developed eggs to understand how identified genes impact fertility
- Drug discovery: novel target identification

Egg in a dish: mimic egg development from stem cells

Genomics

- INCREASED FERTILITY
 - 25% LONGER REPRODUCTIVE LIFESPAN
 - ↑ IVF EFFICIENCY ➔ potential treatment for improving IVF

- Early menopause and disease risk
 - DNA damage
 - Cell death
 - Extra copy of CHEK1
 - Lacking CHEK2

- Breast cancer
- Reproductive cancers
- Bone health
- Diabetes
- Cardio
- Obesity
- Alzheimer’s
- Longevity

Chek1 and Chek2

- N eggs at birth: CHEK1
- Rate of eggs death: CHEK2

Genomics helps us understand why women with early menopause have increased risk of later life diseases like type 2 diabetes ➔ design intervention strategies