

ADVANCING SUSTAINABLE PRACTICES IN ELECTRIC MOTOR DRIVE SYSTEMS FOR GLOBAL ENERGY EFFICIENCY

Z. Parry^a [zaid.parry@nottingham.ac.uk], L. Empringham^a, L. de Lillo^a

^a Power Electronics, Machines and Control Group - Faculty of Engineering, University of Nottingham

1. GLOBAL ENERGY CONSUMPTION SCENARIO¹

 annual motor emissions: 6000 metric tonnes of co_2^1

2. TRANSITIONING TO THE INTEGRATED MOTOR DRIVE (IMD)

- potential to achieve a **20-30% gain in efficiency** using efficient motors.¹ \bullet
- resulting in a **10% reduction** in global electricity demand.¹

user expenses to surge to **\$900 billion** by 2030.

3. PROPOSED IDEA!!!

- **boosting system** ulletefficiency by using advanced semiconductors
- enabling **smaller system sizes** through efficient electrical operation.
- resulting in an **efficient** • integrated drive

4. OUTCOMES

- Application in manufacturing, lacksquareautomotive, aerospace and renewables sectors.
- **decreased** manufacturing cost.

6. CONCLUSION

expected 55% lesser raw material usage

expected

- **reduction** in carbon footprint.
- improvements in **through**life efficiency.
- easing adoption of IMD in the UK.
- assist in fulfilment of the UK's Paris climate commitments.

Waide, P. and Brunner, C.U., 1. 2011. Energy-efficiency policy opportunities for electric motordriven systems.

This work was supported by the Engineering and Physical Sciences Research Council (grant number EP/S024069/1). The work was conducted within the Centre for Doctoral Training in Sustainable Electric Propulsion.