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Introduction Methods , _ s

Early Mars is thought to have been more habitable than present-day Field site: Chemical analysis:
Mars. Evidence from the analysis of martian meteorites, satellite data, Western Sahara salt plains e lon chromatography
and rover/lander missions data support the presence of liquid water,
atmosphere, potential energy sources (e.g., chemical
compounds in different oxidation states such as sulfides and
sulfates), and a magnetic field on early Mars (Grotzinger et al.,
2014). These features are key in sustaining life on Earth and
protecting against radiation. Therefore, early Mars could have
potentially supported Earth-like life.

e Site 1 - thick salt crust e Inductively-coupled plasma optical emission spectroscopy
e Site 2 - wet sand/sediment e Scanning electron microscopy

e Site 3 - dry sand _ _ _ _
Microbiological analysis:

Samples:  DNA extraction

e Salt crystals  16S rRNA gene amplicon and metagenomic sequencing

e Sediment e Cultivation of sulfate-reducing bacteria

During the Noachian-Hesperian transition period, 3.5 - 3.8 billions e \Water S|t ’“ﬂ?
of years ago, Mars became less conducive to life: weakened
magnetic field, evaporation of surface water, concentration of
salt-bearing mineral phases, thinning atmosphere, high intensity
UV rays that were able to reach the surface (Warner et al., 2010). If
Earth-like life was present on Mars, how it would have fared under Salt crystals 00 | e e
these new conditions? 90% -

What is the chemistry of the environment?

: Fine material,
o consistent with clay
Wra s | (Si-, Al-, Ca-, Mg-, K-

Coarse grains that
contain quartz,
titanium oxide and
Ca-/Mg-, Al-/Ca-rich
clasts.

thought to have occurred on Mars following the Noachian-Hesperian (NaCl salt) is the
transition period and can, therefore, teach us about possible life on dominant salt phase.
Mars.
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Sulfur identified only
In a reduced state as
iron sulfide.
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Aim: characterise the microbial diversity and functional potential
0% -

of the Western Sahara salt plains and investigate the chemistry it slie2 sliee
of the sites Fig. 1. Relative abundance of chemical elements and bio-essential anions.
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Fig.3. The taxonomic abundance of bacterial and archaeal 16S rRNA gene sequences. Fig.4. Metabolic pathways of salt, sediment and water metagenomes.
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