

QUANTUM VISION FOR VEHICLES: DETECTORS FOR 3D IMAGING THROUGH OBSCURANTS

R. Millar¹, J. Kirdoda¹, D.C.S. Dumas¹, C. Smith¹, M. Mirza¹, F. Fleming², X. Yi², L. Saalbach², & G.S. Buller² & D.J. Paul¹ (1) University of Glasgow, James Watt School of Engineering (2) Institute of Photonics and QT, Heriot-Watt University.

Light Detection and Ranging (LIDAR)

distance = (speed of light \times time) / 2

- Accurate timing of a pulse of laser light (to and from object) allows distance to be calculated and 3D maps to be generated.
- 3D vision enables 'connected & autonomous vehicles' (CAVs) e.g. 'driverless cars', or advanced safety for collision avoidance in vehicles.
- CAV technologies alone predicted to be large UK market (£6.4 bn) by 2035). [1]

Which colour (wavelength) of light Invisible to human eye is best for LIDAR? **λ** = 1400 nm **Short-Wave Infrared** Visible **Near-Infrared** (SWIR)

Low laser powers required to avoid eye damage

Eye-safe

- Short-wave infrared (SWIR) wavelengths > 1400 nm:
 - Eye-safe
 - Higher permitted laser powers means longer range LIDAR
 - Can image through smoke/fog
- Resilient in poor weather
- Enables CAVs to see further down the road and predict danger

SWIR 3D images at 24 m through smoke [2]

Detectors for LIDAR

- Single photon avalanche diode (SPAD) detector
- Absorbed light (photon) gives energy to an electron in absorber layer

SPAD o	peration
--------	----------

	MARK MARKAN
Alexandra	> SWIR
Absorber	ζ photon
layer	
(Ge)	

- Semiconductor sensor that can accurately time the arrival photons (or quanta) of light
- Excellent for LIDAR

technology is prohibitively expensive

• Solution: Use materials compatible

with Si foundry processing (used to

make computer chips) \rightarrow Cheaper!

Problem: Current SWIR SPAD

• Extend absorption of Si SPAD

technology into the Short-Wave

Infrared using Ge absorber layers

- High voltage across avalanche layer gives electron kinetic energy
- Causes avalanche of electrons \rightarrow current pulse that can be very accurately timed

Ge-on-Si SPADs: Design & Results

- **Developed a patented SPAD design** that reduces 'false-counts' [3,4]
- **Decouples sensitive region from** defective material (isolation trenches)

- **Devices 100X more sensitive than** previous Ge-on-Si SPADs [5]
- LIDAR demonstrated \rightarrow 3D map of model car measured (below) [6]

- Sensitivity SWIR to single photons, and ۲ operation leads to long range, robust LIDAR systems
- Ge-on-Si SPADs are compatible with Si foundry processing, and can therefore be significantly lower-cost than current technology
- Record performance for Ge-on-Si SPADs has • been demonstrated with new design

Group IV materials

IV

Si

Ge

Sn

15

14

A

26.9815385

Ga

• 10 µm diameter p-Ge region

- LIDAR demonstrated in laboratory conditions using eye-safe lasers
- With optimisation, this technology is suitable for mass-markets such as autonomous vehicle LIDAR

Funding

References

[1] Connected Places Catapult Market Forecast [2] R. Tobin et al., Opt. Exp. 27, 4590 (2019) [3] P. Vines et al., Nature Comms. 10, 1086 (2019) [4] GB Patent application no. 1814688.6 (10th September 2018) [5] L. Ferre-Llin et al., Opt. Letters 45 (23), 6406-6409 (2020) [6] K. Kuzmenko et al., Opt. Exp. 28, 1330 (2020)