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Fig. 1. Results of different combinations of fillers and

matrices of recently reported strain sensors [5].

Strain Sensors

While strain sensors are the best
approach to contact mode monitoring?,
it is difficult to find a compromise
between their elasticity and sensitivity?.
These  devices accurately detect
deformation, triggering a shift on its
resistivity. The fractional resistance
change is related to the mechanical

strain by the Gauge Factor (GF):
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We’ve observed no obvious damage after
more than 500 cycles up to 100% strain
and at a strain rate of 100% per second.
Mechanical hysteresis is shown to
decrease with increasing cycle number
(almost identical in cycle 10 - 100). The
sensor exhibits good ohmic conductivity.
For the single, high strain rate strain to

break measurement a well-defined
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Fig. 4. Sensor SEM images and casting process and set up.
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The sensor presents a long

Fig. 5. A) Experimental durability and good recovery. As can be
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works as a parachute (Fig. 6A) canopy
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