SLEEP... ON THE TIP OF THE TONGUE?

R. Bernasconi ${ }^{1}$, D-J. Dijk ${ }^{2,3}$, A. C. Skeldon ${ }^{1,3}$

${ }^{1}$ School of Mathematics and Physics, University of Surrey, Guildford, GU2 7XH, UK; ${ }^{2}$ Surrey Sleep Research Centre, Department of Clinical and Experimental Medicine, University of Surrey, Guildford, GU2 7XP, UK; ${ }^{3}$ UK Dementia Research Institute, Care Research and Technology Centre at Imperial College, London and the University of Surrey, Guildford, GU2 7XP, UK

THE PROBLEM

WHAT CAN WE DO?

First, we must understand fundamental aspects of sleep timing:

Regulation by external and internal rhythms
(2) Rhythms are observed to align very differently in different people

WHAT DO WE NEED?

We need a framework to understand the interaction, and alignment, of the internal rhythms that regulate sleep

CAN MATHS HELP?

Can a mathematical model (the two-process model)...

(1)Reproduce observed differences in rhythm alignment between different people?

(2)Give insight into possible mechanisms underlying differences?

CONCLUSIONS

The fundamental 'tongue' structure of the two-process model can explain the large differences observed in internal rhythm alignment

The model suggests that
a) variation in rhythm alignment is due to a number of different physiological mechanisms
b) the same alignment can be explained by multiple physiological mechanisms

OUTLOOK

Large differences in rhythm alignment between different people may mean a 'one-size-fits-all' treatment to improve sleep timing may be ineffective

Alongside future work to include the effect of external rhythms, the two-process model may act as a novel framework for designing personalised treatment interventions to improve sleep

THE TWO-PROCESS MODEL ${ }^{[5,6]}$

The two-process model
Is a phenomenological model, capturing the interaction of circadian and sleep pressure rhythms to maintain long term sleep function-related homeostasis - Underlies other sleep models that capture neuronal activity during sleep and wake ${ }^{[7]}$
\rightarrow this means we can relate physiological mechanisms controlling sleep to the model parameters:

$$
\begin{aligned}
& \begin{array}{l}
\text { sensitivity to model parameters: } \\
\text { circadian drive }
\end{array} a, \underbrace{\bar{H}, \Delta}_{\text {rate of sleep pressure }}, \overbrace{\chi_{w}}, \chi_{s} \text { accumulation and decay }
\end{aligned}
$$ sensitivity to level of sleep pressure

INDIVIDUAL DIFFERENCES

 in rhythm alignmentThe rhythms that regulate sleep are timed relative to each other:

The alignment between each rhythm varies from person to person, even among healthy individuals:

IMPLCATIONS
Treatments for mis-timed sleep (e.g. melatonin supplements) target the alignment between external and circadian rhythms, but sleep timing also depends on circadian-sleep pressure alignment
(i)

Variation means that 'one-size-fits-all' treatments may be ineffective for some individuals

Parameters control model appearance

OUR WORK - individual differences

GOAL: Understand alignment in the two-process model CHALLENGE: Alignment is not defined a priori in the model SOLUTION: Use two strategies to study the structure of the model

ANALYSIS

1. Make simplifying assumptions (small a)
2. Derive an equation for alignment, Φ
$\left.\Phi=\frac{12}{\pi} \arccos \left(\frac{f(\ldots)}{a \rho}\right)-\theta\right)$
Replace with $\bar{H}, \Delta, \chi_{w}$ or χ_{s}
3. Draw conclusions

- properties of the arccos function mean that alignment can vary by 12 hours
- alignment can be varied by changing values assigned to a and any of $\bar{H}, \Delta, \chi_{w}$ or χ_{s}
OUR WORK - mechanisms

4. Visualise structure as parameters (e.g. a, Δ) are changed

- We find radiating contours of varying alignments
(
Mathematicians call these plots 'Arnold tongues'

1. Solve for alignment using MATLAB software
2. Visualise structure as parameters (e.g $a, \Delta)$ are changed. We observe - how the 'tongue' extends for large a, - that the lower tip of the 'tongue' matches the prediction from Φ equation \rightarrow numerical result has the same fundamental structure as analytical result

Moving across contours in the 'tongue'

