STEM FOR BRITAIN 2024

ETER **Simulators**

TOWARDS SAFE & SUSTAINABLE STRUCTURES: CAN HUMAN JUMP TIMING RELATIVE TO VIBRATION IMPACT SERVICEABILITY?

STEM for

Nimmy Mariam Abraham^{1,*}, Genevieve Williams², Stana Zivanovic^{1,3}

¹Faculty of Environment, Science and Economy, University of Exeter, ²Faculty of Health and Life Sciences, University of Exeter, ³School of Engineering, University of Warwick

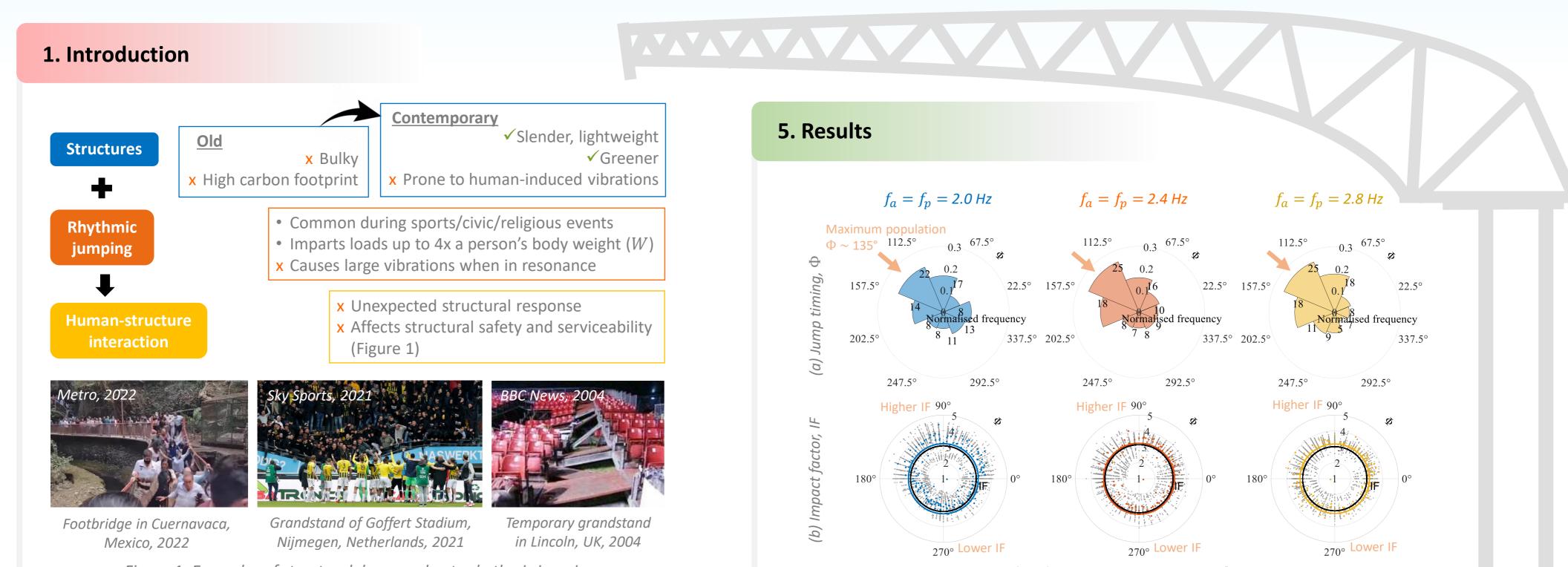
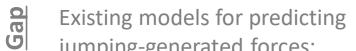
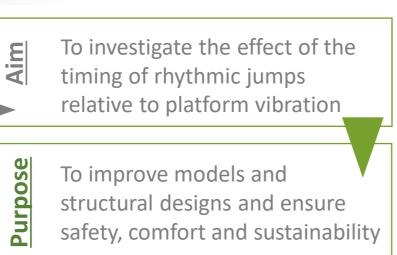
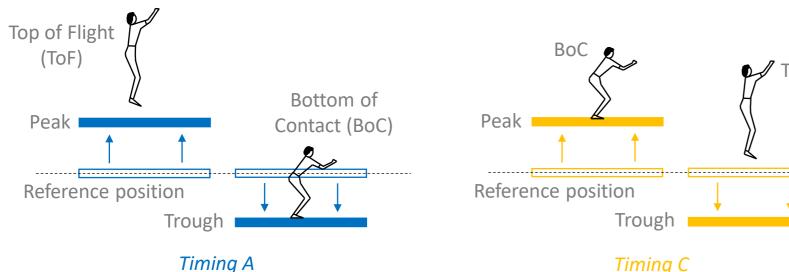




Figure 1: Examples of structural damage due to rhythmic jumping


2. Knowledge gap and aim of the study

- jumping-generated forces:
 - Are inaccurate as based on limited data
 - Overlook jump timing relative to structural vibration [1]

3. Jump timing relative to vibration

ToF coincides with the platform's peak position; BoC coincides with the trough

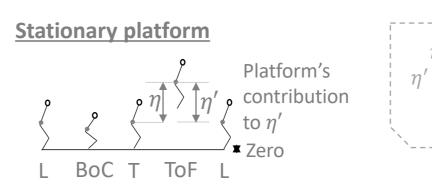

Timing C BoC coincides with the platform's peak position; ToF coincides with the trough

Figure 2: Illustration of jump timing relative to platform vibration

• Rhythmic jumping on vibrating platforms needs to be described by not only the frequency of jumping (FoJ) but also the timing relative to vibration (Figure 2)

4. Tests involving rhythmic jumping

FoJ (target): 2.0, 2.4, 2.8 Hz (On both vibrating &



Grey dots: Cycle-by-cycle (c-b-c); Dots in colour: Mean at each Φ value; Circle in colour: Overall mean on vibrating platform; Black circle: Overall mean on stationary platform

Figure 5: Distribution of (a) Jump timing and (b) Impact factor achieved at three FoJs

- Expected 25% population each in bins encompassing Φ of 0, 90, 180 and 270°, but achieved maximum population at $\Phi \sim 135^{\circ}$ (Figure 5a) \rightarrow Jumpers adjusted timing to take off from a higher position and during the downward platform motion • Higher impact factor (IF = peak force/W) corresponded to Φ between 0 and 180° and lower between 180 and 360° on the vibrating platform, compared to the stationary platform (Figure 5b) \rightarrow Timing adjustment results in greater force
- Overall mean IFs at each frequency on both platforms are similar but c-b-c values are timing-dependent (Figure 5b) \rightarrow Use of c-b-c values appropriate over mean values

6. Physical interpretation

 $\eta =$ Jump height $\eta' = \text{Landing height}$ L: Landing T: Take-off

Figure 6: Illustration of $\eta = \eta'$ on the stationary platform

Vibrating platform

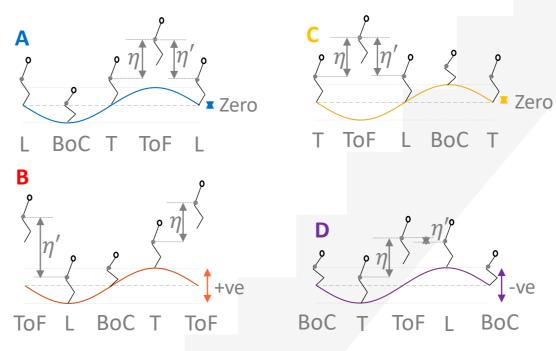


Figure 7: Physical interpretation of four target timings for low-amplitude vibrations

Jumping on vibrating vs stationary platforms (Figures 5, 6 & 7)

A and C: η' and force are similar to stationary platform

B: Greater η' and force \rightarrow Injury risk, Longer flight \rightarrow Late landing \rightarrow Φ tends to 135°

D: Lower η' and force, Muscular effort \rightarrow Premature landing \rightarrow Φ tends to 135°

Time Figure 3: Metronome beat timing relative to platform displacement: A, B, C, D; Target relative phase [2, 3] between jumper and platform, $\Phi =$ jumping on the platform *0, 90, 180, 270°, respectively*

B Beat

Figure 4: A fully instrumented test subject 7. Conclusions

Application

• Jump timing adjustment and the timing-dependent impact factor necessitate a timing-dependent model of jumping-generated force • Neglecting the effect of timing may result in load underestimation

✓ It is proposed to incorporate a timing-dependent load calculation into vibration serviceability guidelines to ensure both human comfort and structural safety without compromising sustainability

References

- 1. White R.E., Macdonald J.H.G., Horseman T.R., & Alexander N.A. 2023. Exploring interactions between a human rhythmic jumper and an oscillating structure using experimental force-displacement analysis. Structures 51.
- 2. Abraham N.M., Williams G., & Zivanovic S. 2023. Impact of vertical vibrations on human rhythmic jumping. Structures 57.
- 3. Wheat J.S., & Glazier P.S. 2006. Measuring coordination and variability in coordination. In: Movement System Variability. Human Kinetics.

*Email: na484@exeter.ac.uk

D

Funding body: Faculty of Environment, Science and Economy, University of Exeter