Improving the Risk Assessment of Offshore Structures

M. Speers¹ D. Randell² J. A. Tawn¹ P. Jonathan^{1,3}

¹Department of Mathematics and Statistics, Lancaster University LA1 4YF, United Kingdom

² Shell Global Solutions International BV, Amsterdam, The Netherlands

³ Shell Research Limited, London, United Kingdom

1 Motivation

- Engineers test offshore structure designs using **complicated** computer models
- They use specially selected design conditions in their simulations

Figure: An oil rig in the North Sea

The Problem

How do we decide which design conditions (e.g., wave height) to use to test offshore structure designs?

2 Methodology

- Old methods make assumptions about the how the waves affect the structure
- They do not model the structure or the individual waves

Our Solution

We model **individual waves** and the **structure**, meaning our design conditions are found using real physics.

3 Storm Peak Data

- Our data comes from the worst part of the storm
- It tells us averages of properties like wave height

Storm Peaks

H_S Significant Wave Height

T_P Significant Wave Period S₂ Significant Wave

Steepness

We call these X.

4 Modelling Storm Peak Data

- We use Extreme Value Theory to estimate the joint probability density
- Darker combinations of variables are more likely to occur

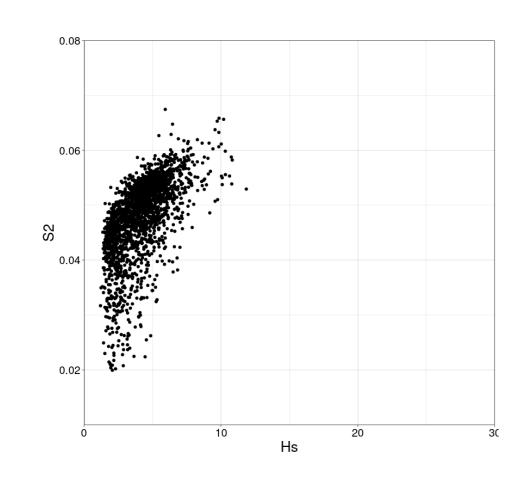


Figure: Storm Data from the North Sea

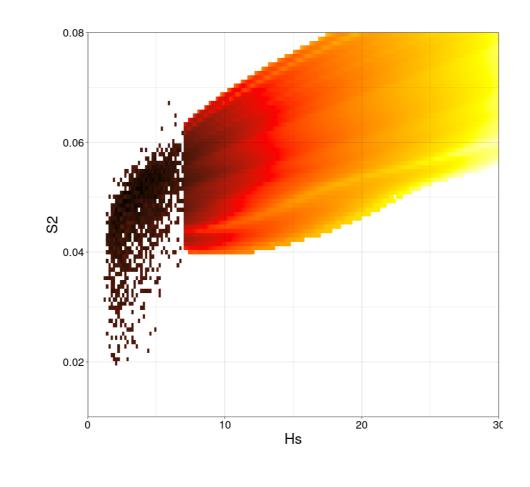


Figure: Probability density

Extreme Value Theory

Extreme Value Theory is an area of statistics that focuses on modelling large values of variables.

5 Simulating Forces on Structures

- We efficiently simulate forces on structures
- We use models for wave kinematics and structural forces

5.1 Wave Simulation

- We simulate wave elevation, speed and acceleration
- This is for a known storm peak X

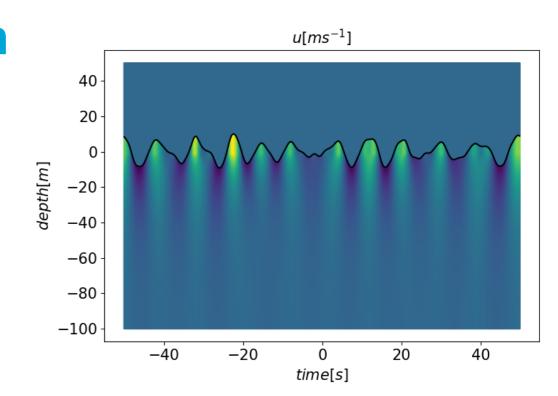


Figure: A simulated wave profile

5.2 Force Modelling

- We generate the total force on the structure at each time
- Then we find the **density** $f_{R|X}$ of the maximum response on the structure **per storm** R for storm peak X.

Probability Density

A **probability density** can tell us the **chance** of a variable being larger than a given value.

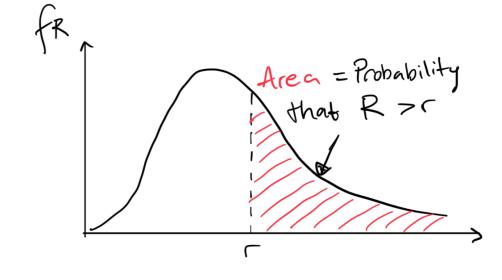


Figure: Example Probability Density

6 Conditional Density of the Environment

We find a new density to get our **design conditions**

$$f_{X|R}(x|r) = \frac{f_X(x) \times f_{R|X}(r|x)}{f_R(r)}$$

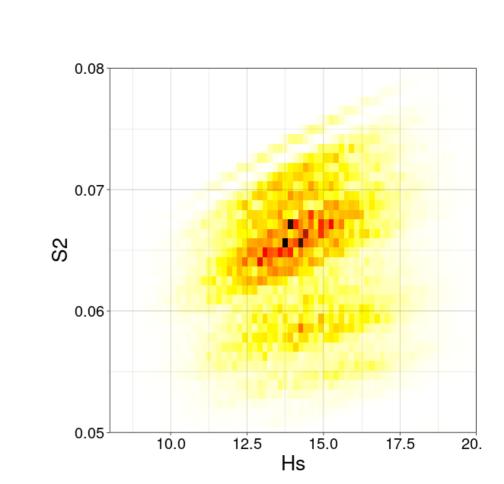


Figure: Example CDE

7 Impact

The CDE

The CDE tells us which storm **peaks** relate to a **given force**.

We have made a **Python package** for use by **data scientists** at Shell, for risk assessment of existing and future designs.

Notation

X Storm peak variables R Maximum force per storm

RX Max force for known storm peak

fy Probability density of Y

GitHub

See below for the Python code used to generate these results!

