Investigating the Key Bridging Ligand in the Active Site of [FeFe] Hydrogenase Enzymes Towards the Development of Artificial Metalloenzymes for Hydrogen Conversion

M. T. Lachmann, A. Depala, Z. Duan, J. A. Birrell, S. B. Carr† and P. Rodríguez-Macías†

School of Chemistry and Leicester Institute of Chemical Biology, University of Leicester, LE1 7RH, UK
Department of Chemistry, Carnegie Mellon University, Pittsburgh, USA
School of Life Sciences, University of St Andrews, St Andrews, UK

Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxfordshire OX11 0QX, UK

1. The Potential of Hydrogen in a Sustainable Future

How do we supply reliable, affordable, and renewable energy to all?

- As renewable energy is an intermittent energy source it requires an energy vector for storage and transportation.1-4
- Hydrogen is the simplest energy vector to manufacture, storing more energy per unit volume and producing zero emissions.5
- Renewables can provide energy to split water into hydrogen and oxygen in an electrolyser, generating chemical energy through strong H-H bonds.6
- Hydrogen can be oxidised to water in a fuel cell to generate electricity.
- There are currently no sustainable catalysts for global hydrogen production/oxidation for use in electrolyser and fuel cells.7,8

2. Hydrogen Enzymes

Nature's hydrogen economy formed billions of years ago with the evolution of hydrogenases.9-20

\[H_2 = H^+ + H^- = 2H^+ + 2e^- \]

They are advantageous to use in fuel cells and electrolyser as they:
- Exhibit very high catalytic rates under ambient conditions
- Are infinitely renewable and biodegradable
- Display excellent specificity
- Can scavenge fuel and oxidants in very low concentrations
- Are very efficient and fast catalysts when adsorbed on electrode surfaces

However, their industrial applications are limited because:
- They are often unstable under harsh conditions
- Their isolation and purification are arduous techniques, which are difficult to scale up to commercial levels
- Exposure to oxygen causes mainly irreversible deactivation

3. [FeFe] Hydrogenases

The [FeFe] hydrogenase is the fastest-known biological catalyst for hydrogen production.14

This N atom withdraws electron density from the active site, acting as a base and polarising the H-H bond

To investigate this, the -NH group has been replaced by an O atom to form an artificial metalloenzyme with different chemical properties

Native Enzyme Artificial Metalloenzyme

Further understanding the role of this -NH group and its interactions with H₂ and the enzyme’s protein scaffold is crucial for developing commercial synthetic mimics or bioinspired catalysts.

4. Active-Site Structure: X-Ray Crystallography

Methionine

Proton Pathway

Cysteine

Gas Channel

Vacant coordination site where catalysis occurs

Distorted

Cysteine Partially Migrated

Artificial Metalloenzyme (0.99 Å resolution)

5. Catalytic Activity: Electrochemistry

H₂ oxidation/production depends on whether the applied potential is positive or negative relative to the thermodynamic potential of the H⁺/H₂ couple (E⁰[H⁺/H₂]).

- Exhibits very high catalytic current densities for both H₂ oxidation and production.
- Reversible high-potential inactivation is observed at high positive potentials.

Native Enzyme

- Exhibits smaller current densities and only in the H₂ oxidation direction; no H₂ production observed.
- Irreversible high-potential inactivation is observed at high positive potentials.

Artificial Metalloenzyme

6. Conclusions

- The flipped bridgehead of the artificial metalloenzyme is likely enabled by the smaller size of O and the weakened interactions with the protein scaffold's amino acid residues.
- Highlights the importance that the amino acids have in maintaining the correct bridgehead position geometry for optimal catalysis by interacting with the active site.
- The partial migration of the cysteine residue into the vacant coordination site in the artificial metalloenzyme allows for greater protection of the active site towards O₂ degradation while maintaining catalytic activity.
- This promises a different catalysis is used in a system that utilises a ‘flipped bridgehead’ mechanism for enhanced O₂ stability in artificial metalloenzymes or synthetic catalysts and overcome one of the main issues of the native enzymes that greatly hinders their commercial applicability.

References