Materials for Flexible Chemical Synthesis in Integrated Carbon Dioxide (CO₂) **Capture and Conversion**

Loukia-Pantzechroula Merkouri, Tomás Ramirez Reina and Melis S. Duyar School of Chemistry and Chemical Engineering, University of Surrey, Guildford, UK

STEM for

BRITAIN

THE SOLUTION

and designing the process to be **flexible** ✓ Producing **on-demand chemicals**, using **CO**₂ as a carbon source to turn vice into virtue

THE RESULTS

100 200 300 400 500 600 700 800 900 Temperature (°C)

100 200 300 400 500 600 700 800 900 Temperature (°C)

1) By using spectroscopic techniques, we discovered the reaction mechanism of the materials studied in this work.

2) Our materials captured CO₂ directly from the air and converted it into a mixture of carbon monoxide (CO) and hydrogen (H_2) , called syngas.

3) Our materials captured CO₂ directly from the air and converted it into synthetic natural gas (CH_4).

We have designed and patented a material which produces most of the TAKE-HOME / chemicals that our society needs out of every possible source, ranging from **MESSAGE** thin air to the majority of the heavy emitters, like cement and steel.

References

[1] Merkouri, L.P.; le Sache, E.; Pastor-Perez, L.; Duyar, M.S.; Reina, T.R. Fuel 2022, 315, 123097

[2] Merkouri, L.P.; Reina, T.R; Duyar, M.S. Nanoscale 2022, 14, 12620-12637. [3] Merkouri, L.P.; Reina, T.R; Duyar, M.S. Energy and Fuels 2021, 35, 19859-19880. [4] Merkouri, L.P.; Paksoy, A.I; Reina, T.R; Duyar, M.S. ACS Catalysis 2023, 13, 7230-7242. [4] Merkouri, L.P.; et. al. Journal of Materials Chemistry A 2023, 11, 13209-13216.

For further information: Email: <u>l.merkouri@surrey.ac.uk</u>

