Queen Mary Understanding Wound Healing University of London at the Nanoscale diamond

Laura Forster¹, Nick Terrill², Tim Snow², Emanuel Rognoni¹ and Himadri S. Gupta¹ 1: Queen Mary University of London, London E1 4NS, 2: Diamond Light Source, Harwell, OX11 0QX

How Does Ultrastructural Stiffness and Structure Affect Wound Healing?

X-ray Scattering for ECM Ultrastructure Gly - X - Y - Gly - X - Y - Gly - X - Y **Fibril Pre-strain**

l.forster@qmul.ac.uk

Nanoindentation for ECM Biomechanics

A prospective molecular marker of early wound healing is lower fibril pre-strain

Conclusion: New nanoscale features identified

Disordered fibrils	Low collagen density	Lower stiffness	Inconsistent D-period
Early wound bed exhibits measurable mechanical and ultrastructural changes.			

Outlook: Link with micro and macro scale changes

Link cell behaviour at microscale and tissue-level response at macroscale with nanoscale features.

Outlook: Biomarker Identification

Characterise **biomarkers** to quantify impaired wound healing and fibrotic conditions.

Outlook: Therapy Innovation

Use pipeline to evaluate existing therapies and find potential future treatments.

Acknowledgements

LF thanks EPSRC for PhD studentship funding. HSG thanks EPSRC, BBSRC and UKRI for grant funding.

STEM for

BRITAIN

Engineering and Physical Sciences Research Council

EP/V011235/1 BB/R003610/1 MR/R025673/1

diamond

We thank Diamond Light Source for synchrotron beamtime, I22 beamline team for support and Thomas Iskratsch, Erica Di Federico and Nuria Gavara for their time and expertise

[1] Guest, JF. et al. 2020 BMJ Open [2] Ahmed, A. 2023 J. Inv. Derma 5(143) [3] Rognoni, E. 2018 Mol. Syst. Biol. 14(8) [4] Inamdar, S. et al. 2017 ACS Nano 11(10) [5] Radlinski, A. et al. 2015 ICCP [6] Antonovaite, N. et al. 2020 [7] Gavara, N. 2016 Nature 6(21267) [8] Pharr, O. et al. 1991. J Mater. Res. 7(4) [9] Hertz, H. et al. 1896 Princ. Mech [10] Gurtner, G. et al. 2008 Nature