'V' INVESTIGATING THE MILLIMETRE-SIZED ICE CRYSTALS
THAT DRIVE THE GLOBAL OCEAN CIRCULATION
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Introduction
* The ocean is crucial to the future climate of our planet as it absorbs excess

heat and acts as a CO, sink

* AKkey process responsible for storage of heat and CO. is the sinking of dense
surface water caused by ice forming around the coast of Antarctica.

* The more ice that forms the more likely the ocean is to remove CO, and store

excess heat o
+  We want to estimate how much ice is forming around the coast of Antarctica

‘ Air-sea CO, flux

Air-sea CO:- fluxes,
NASA's Scientific

A ‘ Visualization Studio [1]

2. In areas with strong enough wind, sea ice is blown away to
leave the ocean ice free apart from small, rising ice crystals

1. Most areas are insulated by a thick sheet
of ice meaning not much ice can form
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We model the surface accumulation of ice crystals in areas where the wind blows forming ice away to
better understand ice formation rates

Methods

* Ascrystals rise, they can: © < / :
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© ‘ 1. When ice crystals rise to the surface, they

are unlikely to break apart
2. Crystals approaching close to parallel or
perpendicular are less likely to fuse than
» : crystals approaching at intermediate angles
*  We calculate the conditions required for crystals to break
or fuse using:
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Maximum Likely Velocity

o Full Simulation = = Small § Approximation Circle Approximation

Analytical
calculations
(using theory for fluid
flows in thin layers
and for elastic
beams)

a = Top disk radius, b = Bottom disk radius, d = Ratio of disk diameter to thickness
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Numerical simulations of the
disk motion (in MATLAB)




