
C-H activation

• The reaction class of interest was the palladium-catalysed C-H activation 

shown below, which yielded several pharmaceutically relevant oxindole 

products. The optimisation parameters were:

• The cumulative data from each case study were leveraged by the MTBO 

algorithm to expediate optimisation:
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Benchmarking of Suzuki Couplings

• Prior to real experimentation, we wanted to understand the performance of 

MTBO in simulated studies. This includes training the MTBO algorithm 

using reaction data from other similar transformations, then comparing 

these results with traditional single-task Bayesian optimisation (STBO).

• We examined two literature reports of Suzuki couplings from Reizman[3] (𝒂 

- 𝒅) and Baumgartner[4] (𝒆), and predictive models were built for their 

reaction yields using a single-layer neural network.

• The goal was to compare the speed of optimisation of reaction yield in 𝒆 

using STBO, with MTBO using prior reaction data from each of 𝒂 - 𝒅. This 

was performed 20 times and averaged.

Results

• The results indicate overall increases in optimisation speed, but is 

dependent on the nature of the ‘task’ that the MTBO algorithm is trained on:

Multi-Task Bayesian Optimisation (MTBO)[2]

• A new, ‘multi-task’ approach to a well-established technique (Bayesian 

optimisation) represents the first examples where previous chemical 

reaction data can be leveraged to further enhance optimisation efficiency.
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Self-Optimisation

• Our automated reactor platform utilises liquid handling robots, pumps, 

switching valves and analytical equipment. The workflow iterates as 

follows:

1. Algorithm selects conditions.

2. Liquid handler loads sample loops.

3. Pumps deliver reagents to reactor.

4. Reaction is analysed via LC-MS.

5. Steps 1 - 4 repeated until optimal 

conditions are identified.

o Residence time (5 - 60 minutes).

o Temperature (50 - 150 °C).

o Catalyst conc. (1 - 10 mol%).

o Solvent (toluene, DMA, acetonitrile, 

DMSO, NMP).

o Ligand (JohnPhos, SPhos, XPhos, 

DPEPhos).

Product Yield /%
Experiments 

required

Starting material 

consumed /mg

75 23 930

85 11 980

98 5 250

82 9 450

5. Conclusions

6. References

• MTBO has proven successful in quickly optimising in silico and real-world 

case studies. Using this methodology significantly reduces the  

consumption of valuable FBDD-relevant starting materials and precursors.

• For these C-H activation case studies, utilising this workflow with MTBO to 

find optimal reaction conditions resulted in a material saving of 132 g 

(£25k) when compared with kinetic studies and 167 g (£32k) when 

compared with traditional ‘design of experiments’ optimisation.
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Reaction Optimisation for FBDD

• Astex is interested in enabling difficult chemistry on fragments to access 

secondary binding pockets, but the required functionalisations are often 

challenging and provide low yields. In particular, carbon atom 

functionalisations have proven to be very desirable but are ultimately 

challenging in the presence of polar groups.[1]

• One way to address these challenges is by deploying continuous-flow 

platforms for the self-optimisation of these processes. These workflows 

exploit automated reactors and machine-learning algorithms to learn from 

previous experiments, thereby maximising yields whilst consuming very 

little starting materials - our reactor setup is shown below.
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