CELL-ebrity gossip: How the communication between cell types drives pancreatic cancer

Catarina Pelicano¹, Lisa Young¹, Yi Chen¹, Naomi Vranas¹, Arnaldo Silva¹, Joshua Kent¹, Alasdair Russell¹, Manav Pathania², Giulia Biffi¹, Igor Chernukhin¹, Shalini V. Rao¹ and Jason S. Carroll¹

¹ Cancer Research UK Cambridge Institute, University of Cambridge, UK. ² Department of Oncology and Milner Therapeutics Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK

What do we know?

- **Traditionally scientists have studied cancer cells on their own.**

 Why is this important?

 Can we find more relevant therapies by studying the effect of surrounding cells in cancer?

- **Surgery**

 Why do we need to understand this communication better?

 Treatment options for pancreatic cancer patients are limited.

- **Radiotherapy**

- **Chemotherapy**

 What do we need to understand this communication better?

What have we found?

- **Pancreatic cells grown alone**

 - iCAFs and myCAFs alter the switches turned on by cancer cells

 - Genes that promote immune responses and resistance to treatment

 - IFN-α and IFN-γ pathways

- **Pancreatic cells grown with iCAFs**

- **Pancreatic cells grown with myCAFs**

Key conclusion:

Both iCAFs and myCAFs make pancreatic cancer cells more aggressive, but they use different molecular mechanisms to do so.

What is our strategy?

1. We grow pancreatic cancer cells alone or in the presence of iCAFs or myCAFs

2. We separate the cancer cells from the CAFs and analyse DNA

Using next-generation sequencing (ATAC-seq, RNA-seq, ChIP-seq), we can “read” the genes of the cancer cells.

What is the impact of these findings?

Understanding the molecular mechanisms of cellular communication opens new therapeutic windows for much needed pancreatic cancer treatments.