Imperial College London

1. MOTIVATION

Cillia: elastic hairlike filaments, generating fluid flows at the microscale, e.g.:

- lining the respiratory system to move mucus,
- used by cells to swim through fluid.

Ciliopathies: diseases caused by defective cilia.

- Symptoms include loss of sight, hearing loss and infertility.
- Ciliopathies can also lead to issues with vital organs, such as the liver, heart and lungs.
- Over 1 in 1000 people are estimated to be affected by ciliopathies [1].

Modelling cilia is vital to understanding how cilia become defective, and how this can lead to ciliopathies.

- We don't fully understand how to model cilia, but a surprisingly simple model is motivated by their internal structure:
- Several slender filaments (called microtubules).
- Driven by molecular motors (called dynein).

2. FOLLOWER FORCE MODEL

- Related model for cilia: single force at filament tip (molecular motor), directed against tangent:

- Filament model [2] accounts for: filament elasticity, follower force, surrounding fluid.
- Generates simulations, telling us the stable behaviours. We want to find and analyse these states.

3. WHAT DO WE MEAN BY "STABLE"?

IDEA: "If I give it a kick (i.e. a small perturbation), does it come back?"
E.g. a straight tape measure is stable...

When changing a parameter, e.g. tape measure length, we see there is a change in stability of the system. This is what we call a bifurcation.

Bifurcations tell us about the system, and turn up everywhere...

...bifurcations even occur at the microscale!

REFERENCES

Preprint: B Clarke, Y Hwang and E E Keaveny, 2024 (sub judice)
[1] http://www.alstrom.org.uk/ciliopathy/ [2] S. F. Schoeller, A. K. Townsend, T. A Westwood and E. E. Keaveny, 'Methods for suspensions of passive and active filaments', Journal of Comp. Physics, 2021

4. BIFURCATION ANALYSIS

- Using our filament model, we find different solutions, whose stability depends on f (i.e. the amount of force we apply):
N No motion Whirling
Stability analysis on the steady and periodic solutions tells us exactly where (i.e. exactly for which f), and how (i.e. by what kind of bifurcation), these transitions happen.
- Some of these behaviours are similar to those observed for real cilia: e.g. $\underbrace{\text { whirling by nodal cilia in embryos, or }} \underbrace{\text { beating by cilia in our airways. }}$

[J. Raidt et al, European Respiratory Journal 2014]
- Both dynamics found at a value of f realistically achievable by a single molecular motor (which motivated our model).

CONCLUSION: Our simple model replicates dynamics of cilia observed in nature, a key step towards understanding defective cilia, and in turn, towards modelling ciliopathies.

