Imperial College London

STEM for Britain 2024 House of Commons Monday 4th March

The Net Zero Opportunity: **Composite Material Innovations Reinforcing UK Aviation**

Adam Whitehouse, Yifei Yang, Sharwa Molla, Victor Médeau, Lorenzo Mencattelli, Emile Greenhalgh, Bamber Blackman, Silvestre Pinho

"Net zero is the economic opportunity of the 21st century"

"We must act decisively to seize the opportunities in a global race"

Independent Review of Net Zero, 2023

What is the problem?

• Decarbonising aviation is a global challenge. The UK aerospace sector must act now to be a part of this radical change - this is essential to not only protect the environment, but also to protect the UK aerospace industry.

What are the solutions?

- Net zero concepts for civilian aircraft require more mass efficient structures.
- Composite materials can provide this, but to fully extract the mass saving benefit, we must develop solutions which make them more resistant to damage.

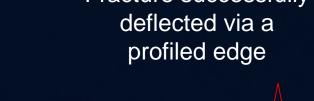
Profiling concept for leading edge protection

Feature:

• Metallic erosion shields are used to protect composite leading edges on blades and wings

Vulnerability:

• The step change in stiffness at the edge of the erosion shield can accelerate failure in the composite part

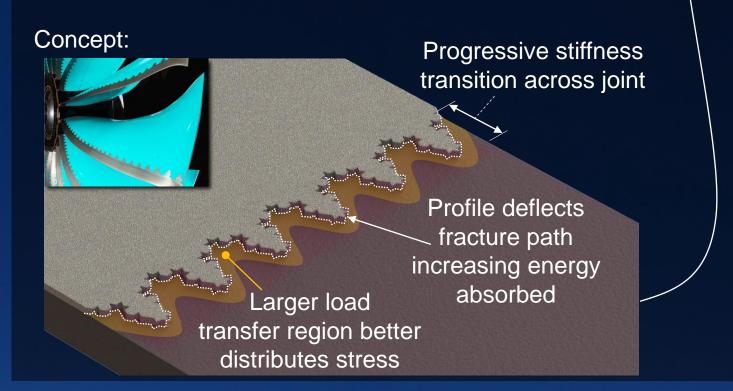


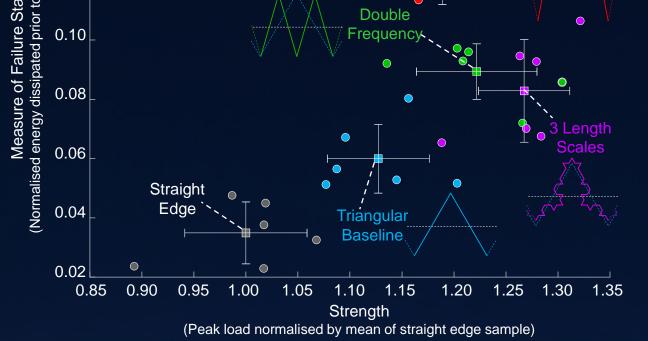
traditionally follows the metal's straight edge

0.16

0.14

0.12


3D reinforcement for delamination resistance


Feature:

• Composites are usually manufactured as 'laminates' – many layers of fibres pressed together with each layer comprising fibres of a single orientation

Vulnerability:

• These layers can separate (delamination), resulting in a rapid loss of stiffness and structural integrity

Profiled designs show increased strength and a more stable failure - results received recognition from SAMPE UK & Ireland

ZEROPARBUS

Manufacture of carbon

skin & stiffener in a single

Automated Fibre

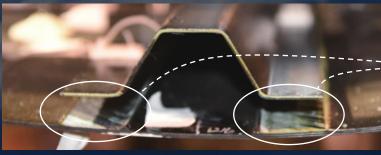
Placement (AFP) process

AFP is being increasingly

adopted in industry – it

reduces material waste

and increases reliability


and rate of manufacturing

Bio-inspired embedded stiffener for improved damage tolerance

Feature:

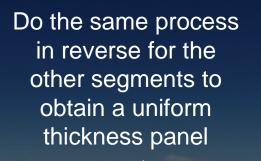
- Composite stiffened panels are composed of 'skins' with 'stiffeners' bonded to the surface
- They are used to provide structural stiffness in a mass efficient manner

Vulnerability:

Stiffeners are vulnerable to separation failure!

This results in a sudden loss of structural integrity!

Concept:


Traditional design

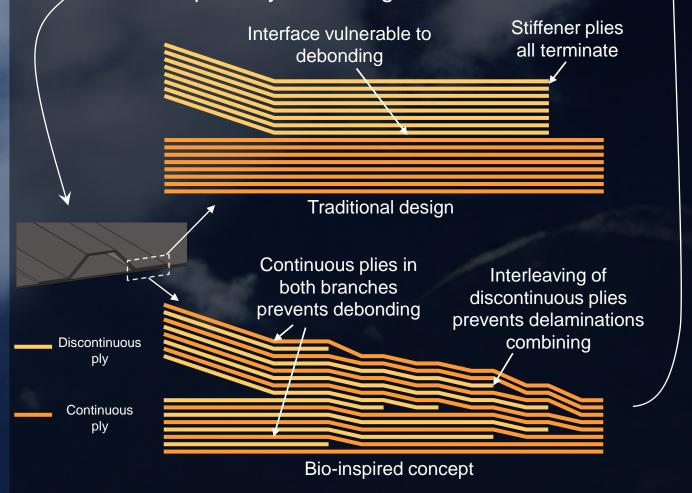
Concept:

Using tape-by-tape manufacturing, split plies into segments of alternating tapes

Repeatedly stack segments to create thickness variations

Cross-section micrographs

Through-thickness reinforcement is achieved which reduces spread of delamination damage


Bio-inspired design

🖽 Burns et al. 2012

Tree branches are embedded to the centre of the trunk creating a structure which is very damage tolerant

I designed a composite stiffened panel with the stiffener attachment embedded to the centre of the skin inspired by this biological structure

Unstable stiffener debonding

Unstable failure! From no detectable damage to immediate catastrophic failure

Bio-inspired design manufactured successfully via

AFP and is seen to prevent separation failure


100

Crack grows progressively before ultimate failure - stable initial crack growth provides a warning allowing repair

Conclusions & future direction

- We have developed innovative new concepts which demonstrate composite materials can be used to create damage resistant structures and by extension the aircraft of the future
- To capitalise on the net zero opportunity the demonstrated concepts must be applied at a higher TRL level with industry partners to realise our end goal of net zero aviation